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1 Pointed Homotopy

Definition 1 Let X, Y be based spaces. A based, or pointed, homotopy between based
maps f, g : X → Y is a continuous function H : X × I → Y satisfying

1) H(x, 0) = f(x), ∀x ∈ X.

2) H(x, 1) = g(x), ∀x ∈ X.

3) H(∗, t) = ∗ , ∀t ∈ I. �

Thus a based homotopy is just a homotopy through pointed maps. Clearly H factors to
produce a pointed map

H̃ : X × I/ ∗ ×I ∼= X ∧ I+ → Y (1.1)

which satisfies the first two listed properties. Conversely, any pointed map X ∧ I+ → Y
satisfying these properties also defines a pointed homotopy. As expected, pointed homotopy
is an equivalence relation on Top∗(X, Y ), and is compatible with composition. We use the
same notation f ' g as in the unpointed case to indicate that f, g are based homotopic.
No confusion should arise, and if we need to be clear we often describe unpointed maps and
homotopies as free.

As in the unbased case, we can also take the adjoint of a homotopy H : X ∧ I+ → Y to
view it as a based map

H# : X → C∗(I+, Y ) ∼= Y I (1.2)

or, if X is locally compact, an unbased map

H̃ : I → C∗(X, Y ). (1.3)
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All the notions and terminology introduced for the unpointed category are also available
in the pointed category. Thus we have the idea of a pointed homotopy equivalence, a pointed
contraction, etc... Many definitions go through essentially unchanged, although others are
distinct. For instance, the strong deformation retractions are the same in both categories,
while the (weak) deformation retractions may differ in general.

Every pointed map which is pointed null homotopic is clearly freely null homotopic, but
some subtlety arises since the converse is not true. In particular there are pointed spaces
which are freely contractible, but not pointed contractible. The fact that the only constant
map into a pointed space is determined by its basepoint turns out to be quite significant.

Example 1.1 Recall the comb space

C = (I × {0}) ∪ ({0} × I) ∪
⋃
n∈N

{1/n} × I ⊆ R2. (1.4)

We showed when we first encountered this space that it is freely contractible. Actually,
inspecting the contracting homotopy we constructed, we see that it fixes the point (0, 0) at
all times. Thus we may conclude that C is pointed contractible when we base it at (0, 0).

On the other hand, let us consider turning C into a based space by pointing it at (0, 1).

Claim: The comb C is not pointed contractible to (0, 1).

From this we see explicitly how different choices of basepoints for the same underlying space
give rise to different pointed homotopy types.

To see that our claim is true, let us assume to the contrary that C is pointed contractible
to (0, 1). Then there exists a contraction F : C × I → C which satisfies F0 = idC , F1(C) =
{(0, 1)}, and Ft(0, 1) = (0, 1), ∀t ∈ I.

Let W ⊆ C be a neighbourhood of (0, 1) such that W ∩ (I × {0}) = ∅. Then, given
t ∈ I we can use the continuity of F to find open neighbourhoods Ut ⊆ W of (0, 1) and Vt
of t such that F (Ut × Vt) ⊆ W . Since I is compact,we can choose finitely many such sets
Vt1 , . . . , Vtn ⊆ I whose union covers I. Taking the intersection of the corresponding sets Uti ,
we get an open neighbourhood U = Ut1 ∩ · · · ∩ Utn of (0, 1) which is contained in W . Note
that the inclusion U ↪→ W is based null homotopic. Indeed, the restriction F |U×I is the
required map.

But here we get a contradiction, since if we take a point (x, y) ∈ U \ {0} × I, then the
path t 7→ F (x, t) runs from (x, y) to (0, 1) and stays inside W at all times. Clearly this can’t
be possible, since such a path must pass through the region I × {0}, which is disjoint from
W . �

Pointed homotopy is an equivalence relation on the sets Top∗(X, Y ), and enjoys good
properties with respect to composition. Thus can form a homotopy category of pointed
spaces in much the same way as the unbased homotopy category was constructed in the
exercises. We leave full details of this to the reader, who should check that the following
definitions make sense.

Definition 2 We denote by hTop∗ the category whose objects are pointed spaces and whose
morphisms are pointed homotopy classes of maps. For pointed spaces X, Y we write

[X, Y ] = hTop∗(X, Y ) = Top∗(X, Y )/ ' (1.5)
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for the morphism sets in this cateory. We call hTop∗ the classical homotopy category of
pointed spaces. �

A morphism [f ] : X → Y in hTop∗ is thus an equivalence class of pointed maps X → Y .
It is normal to identify a given map f which its homotopy class [f ], and write f to denote
either [f ] or a particular representative for it. This is abuse to which we shall conform, and
context will most often save us from confusion.

We can construct coproducts and products in hTop∗. For instance we get the former
using the next lemma.

Lemma 1.1 There are pointed homotopies f ' f ′ : X → Z and g ' g′ : Y → Z if and only
if there is a pointed homotopy (f, g) ' (f ′, g′) : X ∨ Y → Z.

Proof We have the homeomorphism (X ∨ Y ) ∧ I+
∼= (X ∧ I+) ∨ (Y ∧ I+) which makes the

following diagram commute

X ∨ Y
int

��

X ∨ Y
int∨int

��
(X ∨ Y ) ∧ I+

∼= // (X ∧ I+) ∨ (Y ∧ I+)oo

(1.6)

where int generically denotes the inclusion at time t ∈ I. We conclude that a homotopy of
pointed maps X ∨Y → Z is exactly a pair of pointed homotopies X → Z and Y → Z.

There is a similar statement for homotopy classes of maps X → Y × Z into products of
pointed spaces. Since it is identical to the corresponding unpointed statement we refrain
from spelling it out. In either case, the jump from such statements to ones involving infinite
products and coproducts is minor.

Corollary 1.2 The category hTop∗ has all set-indexed products and coproducts.

Spelling this out in the finite case, for pointed spaces X, Y, Z there are bijections

[X ∨ Y, Z] ∼= [X,Z]× [Y, Z], [X, Y × Z] ∼= [X, Y ]× [X,Z] (1.7)

f 7→ (fjX , fjY ) g 7→ (prXg, prY g)

where
X

jY−→ X ∨ Y jY←− Y (1.8)

are the canonical inclusions, and

X
prX←−− X × Y prY−−→ Y (1.9)

are the canonical projections.
In the pointed category we also have access to the smash product. This construction also

respects pointed homotopy.

Lemma 1.3 If there are homotopies f ' f ′ : X → Y and g ' g′ : X ′ → Y ′, then there is a
homotopy

f ∧ g ' f ′ ∧ g′ : X ∧ Y → X ′ ∧ Y ′. (1.10)
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Proof Let G : f ' f ′ and H : g ' g′ and consider the diagram

X × Y × I
q×1

��

1×1×∆// X × Y × I × I
∼= // (X × I)× (Y × I)

G×H // X ′ × Y ′

q′

��
(X ∧ Y )× I //__________________________ X ′ ∧ Y ′

(1.11)

where ∆ is the diagonal and q, q′ are the quotient maps. The dotted arrow represents the
required homotopy. Since I is locally compact, q × 1 is a quotient map, and we can check
that the induced map is indeed continuous.

Remark It would be easy to write down the required homotopy directly were it not for the
failure of the smash product to be associative in general. �

Corollary 1.4 The pointed homotopy type of X ∧ Y depends only on those of X and Y .

More generally, if f : X → X ′ and g : Y → Y ′ have, say, left homotopy inverses h : X ′ → X
and k : Y ′ → Y (so that hf ' idX and kg ' idY ), then

(h ∧ k)(f ∧ g) = (hf) ∧ (kg) ' idX ∧ idY = idX∧Y (1.12)

which is the statement that the next diagram commutes up to homotopy

X ∧ Y

LLL
LLL

LLL
L

LLL
LLL

LLL
L

f∧g // X ′ ∧ Y ′

h∧k
��

X ∧ Y.

(1.13)

In words: if X is a homotopy retract of X ′ and Y is a homotopy retract of Y ′, then X ∧ Y
is a homotopy retract of X ′ ∧ Y ′.

Notice one thing that we are not saying in Corollary 1.4: we are not asserting that the
homotopy type of X ∧ Y has any bearing on those of X or Y . Unlike the product X × Y ,
the spaces X, Y do not retract off of X ∧Y in any natural way. There are plentiful examples
of spaces X, Y for which X ∧ Y ' ∗, while neither X nor Y is contractible.

1.1 Cones and Paths

Every pointed space X embeds as a closed subspace of a pointed contractible space. The
construction is as follows. We give I = [0, 1] the basepoint 1 and define the (reduced) cone
on X to be the space

CX = X ∧ I =
X × I

X × {1} ∪ ∗ × I
. (1.14)

This is canonically contractible by 1.4, and the map

jX : X ∼= X ∧ S0 idX∧in−−−−→ X ∧ I = CX (1.15)
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is a closed embedding. The functorality of the construction is manifest.
As in the unpointed construction, the reduced cone has a certain weak universal property:

the map jX is the weakly initial null homotopic map out of X. We spell this out below, but
first we need to discuss the dual notion, which we did not encounter in the free category.

Keeping the basepoint of I = [0, 1] as 1, for a pointed space Y we define

PY = C∗(I,X) = {l : I → Y | l(1) = ∗} (1.16)

and call it the path space over Y . The start point evaluation map

eY : PY → Y, l 7→ l(0) (1.17)

is continuous, and is a quotient map if Y is connected and locally path-connected [2] pg. 75.
Note that there is no natural map in the opposite direction in the pointed category. The
construction is functorial, and a pointed map f : X → Y induces a map Pf = f∗ : PX =
C∗(I,X)→ C∗(I, Y ) = PY which makes

PX

eX
��

Pf // PY

eY
��

X
f // Y

(1.18)

commute.
The duality we mentioned is more than just aesthetic, and is made precise by the bijection

Top∗(CX, Y ) ∼= Top∗(X,PY ) (1.19)

which holds for any two spaces X, Y 1. The bijection is natural in both variables, and in
particular (1.19) says that the cone and path space functors are left and right adjoint.

Lemma 1.5 For any space Y the path space PY is pointed contractible.

Proof The contraction Fs is given by setting

Fs(l)(t) = l((1− s)t+ s), l ∈ PY, s, t ∈ I. (1.20)

This is clearly continuous, and for l ∈ PY we check that

F0(l) = l, F1(l) = ∗ (1.21)

and that
Fs(l)(1) = l(1). (1.22)

Remark We cannot help but point out a more conceptual approach to the last proof, which
unfortunately falls short of being rigorous. The idea is to notice that for each locally compact
X the bijection (1.19) extends to a homeomorphism

C∗(CX, Y ) ∼= C∗(X,PY ). (1.23)

1This is Proposition 1.2 in The Category of Pointed Topological Spaces.
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Then the contraction CX ' ∗ induces

C∗(CX, Y ) ' C∗(∗, Y ) = ∗. (1.24)

Combining the last two equations we get a contraction

C∗(X,PY ) ' ∗ (1.25)

for each locally compact space X.
If we could remove the hypothesis of locally contractible from (1.25), then we would have

the statement that any pair of maps into PY from any space are homotopic, and would
get that PY is contractible by appealing to Pr. 1.5 of Lecture 1. Notice, however, that
the statement that this reasoning leads to is much stronger than that given in the original
Lemma. For it says that not only is PY contractible, but it is contractible in an essentially
unique way. For example it say that any two contractions are track homotopic.

This is yet more motivation for us to find a way to replace the function spaces C∗(X, Y )
with better behaved objects. This is something we shall take up in a subsequent lecture. �

Evidently a null homotopy G : X ∧ I+ → Y of a map f takes all of X × {1} to the base
point, and so factors to give a map

Ĝ : CX → Y with ĜjX = f. (1.26)

Taking adjoint we can make the same argument. That is, a map H : X → C∗(I+, Y ) ∼=
C(I, Y ) with H(x)(0) = f(x) and H(x)(1) = ∗, ∀x ∈ X, restricts to give a map

Ȟ : X → PY with eY Ȟ = f. (1.27)

This proves:

Proposition 1.6 A map f : X → Y is pointed null homotopic if and only if it extends over
CX if and only if lifts to PY .

We now have three distinct ways to view a null homotopy. Namely as an extension, as a lift,
or as an honest homotopy:

X

jX
��

f // Y

CX
F̂

==zzzzzzzz
F��X

∗

<<

f

""
Y

PY

eY
��

X

F̌
==zzzzzzzz

f
// Y

(1.28)

Notice that the diagrams on the left and right of 1.28 live in Top∗, while the diagram in the
middle really does not. Rather the diagram in the middle is more suggestive of some further
structure on the category. The point is that the cone and path space constructions give a
way of turning the more abstract homotopy into more rigid topological data. In a sense they
mediate between the homotopy category hTop∗ and the category Top∗ itself. This is a rôle
which we will see them play again, in a much more fundamentally important way, when we
come to study fiber and cofiber sequences.
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Example 1.2 The cone on Sn is just the disc Dn+1. This is obvious, but since it so clearly
illustrates the situation we spell it out. The disc Dn+1 is ∗-convex about its basepoint e1, so
is pointed contractible by means of the homotopy

Ft : x 7→ (1− t)x+ te1, x ∈ Dn+1, t ∈ I. (1.29)

Thus we have a null homotopy of the inclusion f : Sn ↪→ Dn+1, and so an extension of f to
a map F̂ : CSn → Dn+1 which is clearly a homeomorphism. �

Example 1.3 The cone functor preserves pushouts. In fact the cone functor preserves all
colimits. This is because it is just the functor (−) ∧ I, and in particular is a left adjoint
according to eq. 1.19. For an example, given squares

A� _

��

f //

y

B

��
X // X ∪A B

CA� _

��

Cf //

y

CB

��
CX // C(X ∪A B)

(1.30)

if the left-hand diagram is a pushout, then so is the right-hand diagram, and there is thus a
basepoint preserving homeomorphism

C(X ∪A B) ∼= CX ∪CA CB. � (1.31)

Example 1.4 Similarly, the path space functor preserves all limits, since it is right adjoint.
As an example, if

X ×Z Y

��

// Y

��
X // Z

p (1.32)

is a pullback, then there is a homeomorphism

P (X ×Z Y ) ∼= PX ×PZ PY. � (1.33)

Suppose f : X → Y is a null homotopic map and F,G : f ' ∗ are a pair of null
homotopies, with corresponding extensions F̂ , Ĝ : CX → Y . Then a track homotopy
ψ : F ∼ G gives rise to a homotopy ψ̂s : F̂ ' Ĝ under X. i.e. a homotopy satisfying

ψ̂s[x, 0] = f(x), ∀x ∈ X. (1.34)

Although, of course, any two maps out of a contractible space are homotopic, the condition
(1.34) is non-trivial (consider Example 1.1, for instance), and gives rise to interesting be-
haviour even in this situation. In the opposite direction, it’s easy to see that a homotopy
H : F̂ ' Ĝ under X exactly defines a track homotopy ψH : F ∼ G. This reasoning leads to
the following:

Proposition 1.7 There is a one-to-one correspondence between track homotopy classes of
null homotopies f ' ∗ : X → Y and relative homotopy classes of extensions f̂ : CX → Y
under X.
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Of course these ideas go through in the dual picture, and we’ll leave to the reader the
task of filling in the details of the next statement.

Proposition 1.8 There is a one-to-one correspondence between track homotopy classes of
null-homotopies f ' ∗ : X → Y and relative homotopy classes of lifts f̌ : X → PY over Y .

1.2 Suspensions and Loops

In the last section we saw how null homotopies can be used to construct certain extensions
and lifts. Moreover we saw how to understand the relative homotopy classes of the maps
thus constructed through the idea of track homotopy. So, what to do with these extensions
and lifts? Well, a moments reflection makes the constructions of this next section seem very
natural.

Suspension We define the (reduced) suspension of a pointed space X by means of the
pushout diagram

X
jX //

jX
��

y

CX

��
CX // ΣX.

(1.35)

Since the cone construction is functorial it is clear that given f : X → Y there is an induced
map of pushouts

Σf : ΣX → ΣY (1.36)

which restricts to Cf on each of the cones, and hence to f on X. By reindexing the intervals
in the cones we get a model for the suspension as a quotient of X × I

ΣX =
X × I

X × {0} ∪X × {1} ∪ ∗ × I
. (1.37)

As a special case of the construction we take X = Sn and identify the cones with discs
as in Example 1.2 to get a pushout

Sn //

�� y

Dn+1

��
Dn+1 // ΣSn.

(1.38)

Since Sn+1 = Dn ∪Sn Dn this makes clear the important homeomorphism

ΣSn ∼= Sn+1. (1.39)

An explicit map for this can be found in Whitehead’s book [3] pg. 107.
In fact this generalises. Take the square (1.38) and apply the functor X ∧ (−) to get

X ∧ S0

��

// X ∧ I

��
X ∧ I // X ∧ S1.

(1.40)
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Lemma 1.9 For any pointed space X, the square (1.40) is a pushout.

Proof Let Z be a pointed space and consider the squares

Top∗(X ∧ S1, Z)

��

// Top∗(X ∧ I, Z)

��
Top∗(X ∧ I, Z) // Top∗(X ∧ S1, Z)

Top∗(X,C∗(S
1, Z))

��

// Top∗(X,PZ)

��
Top∗(X,PZ) // Top∗(X,Z)

which are obtained from each other by adjunction. Then (1.40) is a pushout if and only if
for all Z the left-hand square is a pullback, if and only if for all Z the right-hand square is
a pullback, if and only if for all Z, the square

C∗(S
1, Z)

��

// PZ

eZ

��
PZ

eZ // Z

(1.41)

is a pullback. But this is easy to see.

Remark The lemma is trivially true when X is locally compact. �

With the lemma in hand we may compare (1.40) with the defining square (1.35). When we
recall how the inclusion jX was defined in (1.15) we see that they are identical, so

ΣX ∼= X ∧ S1. (1.42)

Using the model (1.37) its easy to see that this homeomorphism is induced by factoring the
composite X × I → X × S1 → X ∧ S1 over the quotient X × I → ΣX. In fact this makes
apparent that (1.42) is natural in X.

Corollary 1.10 The homotopy type of ΣX depends on X only through its homotopy type.

Proof This follows by writing ΣX ∼= X ∧ S1 and applying Corollary 1.4.

In particular, if X ' Y , then ΣX ' ΣY . We will be quick to point out that the converse
is not true. We will encounter spaces X, Y for which ΣX ' ΣY but X 6' Y , and spaces Z
for which ΣZ ' ∗ while Z 6' ∗. Nevertheless, suspension is an important tool in homotopy
theory. For instance, the suspension isomorphisms in cohomology

HnX ∼= Hn+1ΣX (1.43)

mean that if you are only interested in the homotopy type of X in relation to cohomological
information, then it will suffice to study instead ΣX. This is generally easier to do because,
as we will see, the homotopy set [ΣX, Y ] of maps out of a suspension has a group structure,
which greatly facilitates its computation.

The homeomorphism 1.42 can be iterated. Write Σ0X = X and for n ≥ 1 set ΣnX =
Σ(Σn−1X). Then

Sn ∼= ΣnS0 (1.44)
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and
ΣnX ∼= X ∧ Sn (1.45)

where we have used Corollary 1.7 from Lecture 2. Some care must be taken with these
identifications, however. We have formed all smash products with S1 on the right, despite
the fact that X∧S1 ∼= S1∧X, and there is a reason for being pedantic: although S1∧S1 ∼= S2,
the twist map

T : S1 ∧ S1 ∼=−→ S1 ∧ S1, u ∧ v 7→ v ∧ u (1.46)

is not homotopic to the identity on S2!

Loop Spaces The dual of the suspension is the loop space. Observations similar to Lemma
1.14 can easily be made, and we will be less explicit in this section than the last, leaving
such thoughts for the reader to fill in.

Given a pointed space X we define its loop space ΩX as the pullback

ΩX //

��

PX

eX
��

PX
eX // X.

p

(1.47)

Actually we encounted this space before in equation (1.41) where we obtained our preferred
model for the loop space

ΩX ∼= C∗(S
1, X). (1.48)

i.e. as the space of basepoint preserving maps S1 → X in the compact-open topology.
Writing S1 ∼= I/∂I we see that we can also identify ΩX as the subspace

{l : I → X | l(0) = ∗ = l(1)} ⊆ C(I,X). (1.49)

We see using either (1.47) or (1.48) that Ω is a functor Top∗ → Top∗. We denote by
Ωf : ΩX → ΩY its value at a map f : X → Y . This is exactly the map which sends a loop
l to Ωf(l) = f ◦ l.
Corollary 1.11 The homotopy type of ΩX depends on X only through its homotopy type.

Proof The statement is shown for C(S1, X) in the supplied notes on point-set topology,
and the proof there goes through unchanged for the pointed function space.

It is actually much easier to produce spaces X 6' Y for which ΩX ' ΩY . Indeed, take
X = Z and Y = ∗. Then we actually get homeomorphisms ΩZ = ∗ = Ω∗. On the other
hand, finding path connected examples is trickier, and this is another question which we
shall take up again in future.

Combing equations (1.42) and (1.48) immediately yields the following.

Proposition 1.12 The suspension and loop functors form an adjoint pair. That is, for any
pointed spaces X, Y there is a bijection

Top∗(ΣX, Y ) ∼= Top∗(X,ΩY ). (1.50)

which is natural in both variables. If X is locally compact, then there is a homeomorphism

C∗(ΣX, Y ) ∼= C∗(X,ΩY ). (1.51)
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Really. with the exposition we have given, this statement has been obvious for quite some
time. Since it is so important we have spelled it out. For instance, a basic property of adjoint
functors is the preservation of limits and colimits.

Corollary 1.13 Suspension preserves all colimits. Looping preserves all limits.

Important consequences of this that we feel compelled to record explicitly are the following.
Firstly, for any spaces X, Y there are homeomorphisms

Σ(X ∨ Y ) ∼= ΣX ∨ ΣY, Ω(X × Y ) ∼= ΩX × ΩY. (1.52)

Secondly, if a commuting square

W
f //

g

��

X

h
��

Y k // Z

(1.53)

is given, then i) the left-hand diagram below is a pushout when (1.53) is a pushout, ii) the
right-hand diagram below is a pullback when (1.53) is a pullback

ΣW
Σf //

Σg

��

ΣX

Σh
��

ΣY Σk // ΣZ

ΩW
Ωf //

Ωg

��

X

Ωh
��

ΩY Ωk // ΩZ.

(1.54)

1.3 Understanding Maps Out of a Suspension

In the last section we defined the suspension of a pointed space X as the pushout

X
jX //

jX
��

y

CX

��
CX // ΣX.

(1.55)

In this section we will try to understand the maps ΣX → Y from the suspension into a space
Y . This task is much facilitated by our definition of ΣX as a pushout. In fact, with the aid
of Proposition 1.6, the following is essentially tautological.

Lemma 1.14 There is a one-to-one correspondence between maps ΣX → Y and pairs of
null homotopies of a given map X → Y .

Let us see explicitly how this works, and how two null homotopies are glued together to
define a map. So, assume that f : X → Y is null homotopic and let F,G : f ' ∗ be a pair
of null homotopies with extensions F̂ , Ĝ : CX → Y . The map out of the suspension defined
by this data is then

θ = θ(F, f,G) : ΣX → Y, x ∧ t 7→

{
Ĝ(x, 1− 2t) 0 ≤ t ≤ 1

2

F̂ (x, 2t− 1) 1
2
≤ t ≤ 1.

(1.56)
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Notice that one of the homotopies is necessarily turned upside down and put on the bottom
cone of the suspension. While this is intuitive, it nevertheless leads to some odd behaviour,
and at times an annoying need to keep track of signs and orientations.

The situation is depicted in the following diagrams

CX

Ĝ
��

Xoo

f
��

// CX

F̂
��

Y Y Y

∗

��

Xoo //

f
��

−G⇒

∗
F⇒

��
Y Y Y.

(1.57)

On the left-hand side we take pushouts of the top and bottom rows to induces the map
θ(F,G). On the other hand, this map is truly constructed using the null homotopies in
the right-hand diagram. In this way we see explicitly how the information contained in the
null homotopies is transferred up from X to ΣX: it matters not only that a map is null
homotopic, but also the manner it which it becomes so.

Finally, let us consider a last way of viewing this information. On the right-hand side
of (1.57), the vertical composite −G + F is a homotopy ∗ ' ∗. Intuitively this just runs
the suspension coordinate up one cone and down the other. Clearly every map out of the
suspension has this form. This reasoning leads us to:

Lemma 1.15 There is a one-to-one correspondence between maps ΣX → Y and self homo-
topies of the constant map X

∗−→ Y .

Example 1.5
The inclusion Sn ↪→ Sn+1 is null homotopic. While there is no canonical null homotopy of this
map, there are a pair of preferred null homotopies. In more detail, we consider Sn+1 with its
standard embedding into Rn+2, and Sn embedded in Sn+1 at the equator. Then the inclusion
Sn ↪→ Sn+1 extends over both the northern and southern hemispheres to give our preferred
pair of null homotopies. With reference to Proposition 1.6, let F+, F− : Dn+1 → Sn+1 be
these two homotopies. Note that they are just the inclusions of the northern and southern
hemispheres.

To proceed let us take for granted the fact that Sn+1 is not contractible. Then using
1.57 we can now construct four maps Sn+1 → Sn+1. The first of these maps sends each
hemisphere to itself and is just the identity

θ(F+, F−)(x0, . . . , xn+1) = (x0, . . . , xn+1). (1.58)

In particular, this map is not null homotopic. The next map switches the two hemispheres,
and so inverts the sign of the last coordinate

θ(F−, F+)(x0, . . . , xn+1) = (x0, . . . , xn,−xn+1). (1.59)

Again this map is not null homotopic, since it is clearly a homeomorphism.
On the other hand, the last two maps wrap both the hemispheres of their domain onto

the same hemisphere of their target

θ(F+, F+)(x0, . . . , xn+1) =

{
(x0, . . . , xn,−xn+1) −1 ≤ xn+1 ≤ 1

(x0, . . . , xn, xn+1) 0 ≤ xn+1 ≤ 1
(1.60)

θ(F−, F−)(x0, . . . , xn+1) =

{
(x0, . . . , xn, xn+1) −1 ≤ xn+1 ≤ 1

(x0, . . . , xn,−xn+1) 0 ≤ xn+1 ≤ 1
(1.61)
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It’s not difficult to see that both these maps are null homotopic. �
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